Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Microbiol Methods ; 214: 106830, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37805093

RESUMEN

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay has been employed in the analysis of bacterial growth. In comparison to experiments conducted on mammalian cells, the MTT bacterial assay encounters a greater number of interfering factors and obstacles that impact the accuracy of results. In this study, we have elucidated an improved MTT assay protocol and put forth an equation that establishes a correlation between colony-forming units (CFU) and the amount of formazan converted by the bacteria, drawing upon the fundamental principle of the MTT assay. This equation is represented as CFU=kF. Furthermore, we have explicated a methodology to determine the scale factor "k" by employing S. aureus and E. coli as illustrative examples. The findings indicate that S. aureus and E. coli reduce MTT by a cyclic process, from which the optimal reduction time at room temperature was determined to be approximately 30 mins. Furthermore, individual E. coli exhibits an MTT reduction capacity approximately four times greater than that of S. aureus. HPLC analysis proves to be the most accurate method for mitigating interferences during the dissolution and quantification of formazan. Additionally, this study has identified a new constraint related to the narrow linear range (0-125 µg/mL) of formazan concentration-absorbance and has presented strategies to circumvent this limitation.


Asunto(s)
Colorimetría , Escherichia coli , Animales , Colorimetría/métodos , Formazáns , Staphylococcus aureus , Sales de Tetrazolio , Mamíferos
2.
Int J Food Microbiol ; 405: 110372, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37672942

RESUMEN

The potential of using commercial peroxyacetic acid (PAA) for Vibrio parahaemolyticus sanitization was evaluated. Commercial PAA of 0.005 % (v/v, PAA: 2.24 mg/L, hydrogen peroxide: 11.79 mg/L) resulted in a planktonic cell reduction of >7.00 log10 CFU/mL when initial V. parahaemolyticus cells averaged 7.64 log10 CFU/mL. For cells on stainless steel coupons, treatment of 0.02 % PAA (v/v, PAA: 8.96 mg/L, hydrogen peroxide: 47.16 mg/L) achieved >5.00 log10 CFU/cm2 reductions in biofilm cells for eight strains but not for the two strongest biofilm formers. PAA of 0.05 % (v/v, PAA: 22.39 mg/L, hydrogen peroxide: 117.91 mg/L) was required to inactivate >5.00 log10 CFU/cm2 biofilm cells from mussel shell surfaces. The detection of PAA residues after biofilm treatment demonstrated that higher biofilm production resulted in higher PAA residues (p < 0.05), suggesting biofilm is acting as a barrier interfering with PAA diffusing into the matrices. Based on the comparative analysis of genomes, robust biofilm formation and metabolic heterogeneity within niches might have contributed to the variations in PAA resistance of V. parahaemolyticus biofilms.


Asunto(s)
Perna , Vibrio parahaemolyticus , Animales , Peróxido de Hidrógeno/farmacología , Ácido Peracético/farmacología , Acero Inoxidable , Biopelículas , Plancton
4.
Food Res Int ; 166: 112605, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36914349

RESUMEN

Vibrio parahaemolyticus biofilms on the seafood processing plant surfaces are a potential source of seafood contamination and subsequent food poisoning. Strains differ in their ability to form biofilm, but little is known about the genetic characteristics responsible for biofilm development. In this study, pangenome and comparative genome analysis of V. parahaemolyticus strains reveals genetic attributes and gene repertoire that contribute to robust biofilm formation. The study identified 136 accessory genes that were exclusively present in strong biofilm forming strains and these were functionally assigned to the Gene Ontology (GO) pathways of cellulose biosynthesis, rhamnose metabolic and catabolic processes, UDP-glucose processes and O antigen biosynthesis (p < 0.05). Strategies of CRISPR-Cas defence and MSHA pilus-led attachment were implicated via Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation. Higher levels of horizontal gene transfer (HGT) were inferred to confer more putatively novel properties on biofilm-forming V. parahaemolyticus. Furthermore, cellulose biosynthesis, a neglected potential virulence factor, was identified as being acquired from within the order Vibrionales. The cellulose synthase operons in V. parahaemolyticus were examined for their prevalence (22/138, 15.94 %) and were found to consist of the genes bcsG, bcsE, bcsQ, bcsA, bcsB, bcsZ, bcsC. This study provides insights into robust biofilm formation of V. parahaemolyticus at the genomic level and facilitates: identification of key attributes for robust biofilm formation, elucidation of biofilm formation mechanisms and development of potential targets for novel control strategies of persistent V. parahaemolyticus.


Asunto(s)
Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Biopelículas , Genómica , Operón , Celulosa
5.
Metabolites ; 13(2)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36837871

RESUMEN

This work focused on the metabolomic profiling of the conditioned medium (FS03CM) produced by an anaerobic bacterium closely related to Terrisporobacter spp. to identify potential antimicrobial metabolites. The metabolome of the conditioned medium was profiled by two-channel Chemical Isotope Labelling (CIL) LC-MS. The detected metabolites were identified or matched by conducting a library search using different confidence levels. Forty-eight significantly changed metabolites were identified with high confidence after the growth of isolate FS03 in cooked meat glucose starch (CMGS) medium. Some of the secondary metabolites identified with known antimicrobial activities were 4-hydroxyphenyllactate, 3-hydroxyphenylacetic acid, acetic acid, isobutyric acid, valeric acid, and tryptamine. Our findings revealed the presence of different secondary metabolites with previously reported antimicrobial activities and suggested the capability of producing antimicrobial metabolites by the anaerobic bacterium FS03.

6.
Int J Food Microbiol ; 385: 110011, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36370527

RESUMEN

Vibrio parahaemolyticus is a marine oriented pathogen; and biofilm formation enables its survival and persistence on seafood processing plant, complicating the hygienic practice. The objectives of this study are to assess the ability of V. parahaemolyticus isolated from seafood related environments to form biofilms, to determine the effective sodium hypochlorite concentrations required to inactivate planktonic and biofilm cells, and to evaluate the genetic diversity required for strong biofilm formation. Among nine isolates, PFR30J09 and PFR34B02 isolates were identified as strong biofilm forming strains, with biofilm cell counts of 7.20, 7.08 log10 CFU/cm2, respectively, on stainless steel coupons after incubation at 25 °C. Free available chlorine of 1176 mg/L and 4704 mg/L was required to eliminate biofilm cells of 1.74-2.28 log10 CFU/cm2 and > 7 log10 CFU/cm2, respectively, whereas 63 mg/L for planktonic cells, indicating the ineffectiveness of sodium hypochlorite in eliminating V. parahaemolyticus biofilm cells at recommended concentration in the food industry. These strong biofilm-forming isolates produced more polysaccharides and were less susceptible to sodium hypochlorite, implying a possible correlation between polysaccharide production and sodium hypochlorite susceptibility. Genetic diversity in mshA, mshC and mshD contributed to the observed variation in biofilm formation between isolates. This study identified strong biofilm-forming V. parahaemolyticus strains of new multilocus sequence typing (MLST) types, showed a relationship between polysaccharide production and sodium hypochlorite resistance.


Asunto(s)
Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Hipoclorito de Sodio/farmacología , Tipificación de Secuencias Multilocus , Biopelículas , Variación Genética
7.
Biofouling ; 38(8): 786-795, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36210503

RESUMEN

Listeria monocytogenes is a gram-positive foodborne pathogen that causes outbreaks of listeriosis associated with a diverse range of foods. L. monocytogenes forms biofilms as a strategy to enhance its survival in the environment. These biofilms then provide a source of contamination in processing plant environments. Cations like magnesium, calcium, and sodium are commonly found in the environment and are important to bacteria to maintain their homeostasis. It is, therefore, valuable to understand the relationship between these cations and biofilm formation. In this study, four isolates of L. monocytogenes from seafood processing environments were used to investigate the influence of magnesium, calcium, and sodium (1, 10, and 50 mM) on biofilms. The isolates selected were defined as being either a low biofilm former, a high biofilm former, an outbreak isolate, and a persistent isolate from the seafood industry. The study showed that the divalent cations magnesium and calcium increased biofilm formation compared with the monovalent cation, sodium. Fifty mM concentrations of the divalent cations significantly enhanced biofilm formation. The cations did not have a significant effect on the initial stages of biofilm formation but appeared to influence the later stages of biofilm development.


Asunto(s)
Listeria monocytogenes , Magnesio/farmacología , Calcio/farmacología , Microbiología de Alimentos , Biopelículas , Adhesión Bacteriana , Sodio/farmacología , Cationes Bivalentes/farmacología , Contaminación de Alimentos/análisis
8.
Injury ; 53(11): 3838-3842, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36153252

RESUMEN

AIMS: Open tibial fractures are often life-changing injuries and patient outcomes remain poor despite the introduction of national management guidelines. The longer-term impact to the patient can be considerable but this is often overlooked in the literature. This study aims to establish the functional, physical, and psychosocial impact of sustaining an open tibial fracture. METHODS: We reviewed 69 consecutive Gustilo-Anderson grade IIIB and IIIC open tibial fractures that presented to our Major Trauma Centre (MTC) between September 2012 and April 2018. Each participant was interviewed and sent patient-reported outcome questionnaires, a minimum of 12 months following injury. Our primary outcome was the Lower Extremity Functional Scale (LEFS). Secondary outcomes included the Short-Form 36 Healthy Survey (SF-36), Sickness Impact Profile 128 (SIP) and return to occupation. Subgroups were analysed according to age, Injury Severity Score (ISS) and limb amputation. RESULTS: The mean follow up was 43 months. 96% were grade IIIB and 4% grade IIIC. The response rate for our study was 72%. The mean LEFS was 42 (IQR 21.5-58.5). All total and sub-domain scores within both the SF-36 and SIP questionnaires were reduced when compared to normative population data. Only 48% of patients returned to full time employment. Subgroup analysis revealed significantly reduced LEFS, SIP and SF-36 subdomain scores for those with a presenting ISS >14 and those undergoing limb amputation. CONCLUSION: Patients are at significant risk of longer-term functional, physical and psychosocial harm after suffering an open tibial fracture. Those sustaining major polytrauma or amputation demonstrated to have the greatest risk of poor outcome. Early identification of these individuals likely to suffer most from their injury would help direct appropriate resources to those with greatest need at the earliest opportunity.


Asunto(s)
Fracturas Abiertas , Fracturas de la Tibia , Humanos , Amputación Quirúrgica , Fracturas Abiertas/cirugía , Fracturas Abiertas/psicología , Medición de Resultados Informados por el Paciente , Estudios Retrospectivos , Tibia , Fracturas de la Tibia/epidemiología , Resultado del Tratamiento
9.
Int J Food Microbiol ; 379: 109829, 2022 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-35863149

RESUMEN

Red fermented rice (RFR) is rice fermented using Monascus spp. This product contains monacolin K, providing health benefits including mitigation of diarrhoea and improving blood circulation. RFR can produce pigments that can act as natural colour and flavouring agents. However, Monascus spp. (a fungal starter to ferment RFR) can also produce the mycotoxin, citrinin (CIT) which is believed to have adverse effects on human health. CIT in RFR has been reported worldwide by using different methods of detection. This review focuses on the production of RFR by solid-state fermentation (SSF) and submerged fermentation (SmF), the occurrence of CIT in RFR, CIT quantification, the factors affecting the growth of Monascus spp., pigments and CIT production in RFR, and possible methods to reduce CIT in RFR. This review will help the food industries, researchers, and consumers understand the risk of consuming RFR, and the possibility of controlling CIT in RFR.


Asunto(s)
Citrinina , Monascus , Oryza , Citrinina/metabolismo , Fermentación , Humanos , Lovastatina , Monascus/metabolismo , Oryza/microbiología
10.
J Microbiol Methods ; 199: 106523, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35716844

RESUMEN

Red fermented rice (RFR) is produced using Monascus spp. This product has some health benefits. However, RFR can also contain the mycotoxin, citrinin (CIT) and that has adverse effects on human health. The objective of the study was to develop a simple and rapid screening method for the detection of Monascus spp. isolates that can produce CIT by using Coconut Cream Agar (CCA). RFR was spread onto CCA and other media and incubated at 30 °C for 7 days. All the media were observed daily under ultraviolet (UV) light and any Monascus spp. colony that produced light blue fluorescence was recorded as a CIT-producer. Two different isolates (MF1 and MS1) isolated from CCA were selected for further analysis. All (100%; 10/10 plates) of CCA inoculated with MF1 produced light blue fluorescence after incubation for 4 days, meanwhile 30% (3/10 plates) of MS1 produced weak fluorescence on CCA after incubation for 7 days. Isolates MF1 and MS1 were identified as M. purpureus with the ability to produce CIT by having polyketide synthase (pksCT) and transcriptional regulator (ctnA) genes. CIT was quantified by high-performance liquid chromatography (HPLC). CCA is a simple and rapid method to detect CIT-producers of Monascus spp.


Asunto(s)
Citrinina , Monascus , Oryza , Agar , Citrinina/análisis , Cocos , Humanos , Monascus/genética
11.
Food Chem ; 390: 133165, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35561509

RESUMEN

This study investigates the reduction of aflatoxin M1 (AFM1) in skim milk by using ultraviolet light at 254 nm and the effects of influencing factors on the efficacy including treatment time (min), depth of samples (mm), contamination level (µg L-1), stirring, temperature, and fat content in milk. The colour and pH of milk samples were measured to evaluate the influence of the treatment on these values. It was found that short-wave ultraviolet radiation (UVC) reduced up to 50% of AFM1 in milk after 20 min of treatment regardless of the initial AFM1 contamination level. Treatment time, depth of samples, and stirring were all found to significantly (P < 0.05) enhance the reduction of AFM1. The milk colour was affected but there was no influence on the pH of milk samples at any duration of UV exposure. It is concluded that UVC light treatment has the potential to reduce AFM1 in milk.


Asunto(s)
Aflatoxina M1 , Leche , Aflatoxina M1/análisis , Animales , Contaminación de Alimentos/análisis , Leche/química , Rayos Ultravioleta
12.
Food Chem ; 386: 132814, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35509170

RESUMEN

Cold plasma has potential for the degradation of aflatoxins in corn and hazelnuts; however, this has not been demonstrated for aflatoxin in milk. In this study, the efficacy of high voltage atmospheric cold plasma (HVACP) on the reduction of aflatoxin M1 (AFM1) in skim milk improved with increasing treatment times (1-20 min), using gas containing 65% oxygen (MA65) rather than air, increasing voltage (60-80 kV) and reducing sample volume (30 mL-10 mL). Direct treatment was more effective than indirect treatment. AFM1 in milk was degraded by 65.0 % and 78.9 % by air and MA65 respectively in 20 min with no change in milk colour. The toxicity of AFM1 after treatment was assessed using a brine shrimp model. A five-minute HVACP treatment reduced the toxicity of AFM1 by 83.9 % based on the increase in brine shrimp survival. HVACP is a promising method to reduce AFM1 in milk.


Asunto(s)
Aflatoxinas , Gases em Plasma , Aflatoxina M1/análisis , Aflatoxinas/análisis , Animales , Contaminación de Alimentos/análisis , Contaminación de Alimentos/prevención & control , Leche/química
13.
PLoS One ; 17(4): e0266406, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35363830

RESUMEN

The exploitation of natural antimicrobial compounds that can be used in food preservation has been fast tracked by the development of antimicrobial resistance to existing antimicrobials and the increasing consumer demand for natural food preservatives. 2-hydroxyisocaproic acid (HICA) is a natural compound produced through the leucine degradation pathway and is produced in humans and by certain microorganisms such as lactic acid bacteria and Clostridium species. The present study investigated the antibacterial efficacy of HICA against some important bacteria associated with food quality and safety and provided some insights into its possible antimicrobial mechanisms against bacteria. The results revealed that HICA was effective in inhibiting the growth of tested Gram-positive and Gram-negative bacteria including a multi-drug resistant P. aeruginosa strain in this study. The underlying mechanism was investigated by measuring the cell membrane integrity, membrane permeability, membrane depolarisation, and morphological and ultrastructural changes after HICA treatment in bacterial cells. The evidence supports that HICA exerts its activity via penetration of the bacterial cell membranes, thereby causing depolarisation, rupture of membranes, subsequent leakage of cellular contents and cell death. The current study suggests that HICA has potential to be used as an antibacterial agent against food spoilage and food-borne pathogenic bacteria, targeting the bacterial cell envelope.


Asunto(s)
Antibacterianos , Antiinfecciosos , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Caproatos , Bacterias Gramnegativas , Bacterias Grampositivas , Humanos , Pruebas de Sensibilidad Microbiana
14.
BMC Genomics ; 22(1): 686, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34548019

RESUMEN

BACKGROUND: Soil bacteria are a major source of specialized metabolites including antimicrobial compounds. Yet, one of the most diverse genera of bacteria ubiquitously present in soil, Clostridium, has been largely overlooked in bioactive compound discovery. As Clostridium spp. thrive in extreme environments with their metabolic mechanisms adapted to the harsh conditions, they are likely to synthesize molecules with unknown structures, properties, and functions. Therefore, their potential to synthesize small molecules with biological activities should be of great interest in the search for novel antimicrobial compounds. The current study focused on investigating the antimicrobial potential of four soil Clostridium isolates, FS01, FS2.2 FS03, and FS04, using a genome-led approach, validated by culture-based methods. RESULTS: Conditioned/spent media from all four Clostridium isolates showed varying levels of antimicrobial activity against indicator microorganism; all four isolates significantly inhibited the growth of Pseudomonas aeruginosa. FS01, FS2.2, and FS04 were active against Bacillus mycoides and FS03 reduced the growth of Bacillus cereus. Phylogenetic analysis together with DNA-DNA hybridization (dDDH), average nucleotide identity (ANI), and functional genome distribution (FGD) analyses confirmed that FS01, FS2.2, and FS04 belong to the species Paraclostridium bifermentans, Clostridium cadaveris, and Clostridium senegalense respectively, while FS03 may represent a novel species of the genus Clostridium. Bioinformatics analysis using antiSMASH 5.0 predicted the presence of eight biosynthetic gene clusters (BGCs) encoding for the synthesis of ribosomally synthesized post-translationally modified peptides (RiPPs) and non-ribosomal peptides (NRPs) in four genomes. All predicted BGCs showed no similarity with any known BGCs suggesting novelty of the molecules from those predicted gene clusters. In addition, the analysis of genomes for putative virulence factors revealed the presence of four putative Clostridium toxin related genes in FS01 and FS2.2 genomes. No genes associated with the main Clostridium toxins were identified in the FS03 and FS04 genomes. CONCLUSIONS: The presence of BGCs encoding for uncharacterized RiPPs and NRPSs in the genomes of antagonistic Clostridium spp. isolated from farm soil indicated their potential to produce novel secondary metabolites. This study serves as a basis for the identification and characterization of potent antimicrobials from these soil Clostridium spp. and expands the current knowledge base, encouraging future research into bioactive compound production in members of the genus Clostridium.


Asunto(s)
Antiinfecciosos , Suelo , Bacillus , Clostridium/genética , Filogenia
15.
Biofouling ; 37(6): 680-688, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34369215

RESUMEN

The formation of biofilms is a survival strategy employed by bacteria to help protect them from changing or unfavourable environments. In this research, 319 genes which govern biofilm formation in V. parahaemolyticus, as reported in 1,625 publications, were analysed using protein-protein-interaction (PPI) network analysis. CsrA was identified as a motility-sessility switch and biofilm formation regulator. Through robust rank aggregation (RRA) analysis of GSE65340, the generation of viable but non-culturable (VBNC) cells that may enhance cell tolerance to stress, was found to be associated with the TCA cycle and carbon metabolism biological pathways. The finding that CsrA is likely to play a role in the development of VBNC cells improves understanding of the molecular mechanisms of VBNC formation in V. parahaemolyticus and contributes to on-going efforts to reduce the hazard posed by this foodborne pathogen.


Asunto(s)
Vibrio parahaemolyticus , Bacterias , Biopelículas , Simulación por Computador
16.
Food Res Int ; 147: 110528, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34399506

RESUMEN

Lactobacillus spp. are known to accumulate large amounts of inorganic manganese, which protects against oxidative damage by scavenging free radicals. The ability of probiotic L. paracasei ATCC 55544 to maintain viability during long-term ambient storage may be enhanced by this microorganism's ability to accumulate manganese, which may act as a free radical scavenger. To investigate this hypothesis, X-ray fluorescence microscopy (XFM) was employed to determine the changes in the elemental composition of L. paracasei during growth in the MRS medium with or without added manganese. Moreover, manganese uptake by cells as a function of physiological growth state, early log vs. stationary phase was evaluated. The semiquantitative X-ray fluorescence microscopy results revealed that lower levels of manganese accumulation occurred during the early log phase of bacterial growth of L. paracasei cells (0.0064 µg/cm2) compared with the stationary phase cells (0.1355 µg/cm2). L. paracasei cells grown in manganese deficient MRS medium resulted in lower manganese uptake by cells (0.0027 µg/cm2). The L. paracasei cells were further embedded in milk powder matrix using a fluidized-bed drying technique and stored at a water activity (aw) of 0.33 at 25 °C for 15 days. The viability counts of L. paracasei cells grown in MRS medium harvested after 18 h growth and embedded in milk powder matrix retained viability of (9.19 ± 0.12 log CFU/g). No viable L. paracasei cells were observed in the case of embedded L. paracasei cells grown in manganese-deficient MRS medium harvested after 18 h growth or in the case of L. paracasei cells harvested after 4 h when grown in MRS medium. The lower level of manganese accumulation was found to be related to the loss of bacterial viability during storage.


Asunto(s)
Lacticaseibacillus paracasei , Probióticos , Manganeso , Viabilidad Microbiana , Microscopía Fluorescente , Sincrotrones , Rayos X
17.
Appl Environ Microbiol ; 87(10)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33741610

RESUMEN

Listeria monocytogenes is a ubiquitous foodborne pathogen that results in a high rate of mortality in sensitive and immunocompromised people. Contamination of food with L. monocytogenes is thought to occur during food processing, most often as a result of the pathogen producing a biofilm that persists in the environment and acting as the source for subsequent dispersal of cells onto food. A survey of seafood-processing plants in New Zealand identified the persistent strain 15G01, which has a high capacity to form biofilms. In this study, a transposon library of L. monocytogenes 15G01 was screened for mutants with altered biofilm formation, assessed by a crystal violet assay, to identify genes involved in biofilm formation. This screen identified 36 transposants that showed a significant change in biofilm formation compared to the wild type. The insertion sites were in 27 genes, 20 of which led to decreased biofilm formation and seven to an increase. Two insertions were in intergenic regions. Annotation of the genes suggested that they are involved in diverse cellular processes, including stress response, autolysis, transporter systems, and cell wall/membrane synthesis. Analysis of the biofilms produced by the transposants using scanning electron microscopy and fluorescence microscopy showed notable differences in the structure of the biofilms compared to the wild type. In particular, inactivation of uvrB and mltD produced coccoid-shaped cells and elongated cells in long chains, respectively, and the mgtB mutant produced a unique biofilm with a sandwich structure which was reversed to the wild-type level upon magnesium addition. The mltD transposant was successfully complemented with the wild-type gene, whereas the phenotypes were not or only partially restored for the remaining mutants.IMPORTANCE The major source of contamination of food with Listeria monocytogenes is thought to be due to biofilm formation and/or persistence in food-processing plants. By establishing as a biofilm, L. monocytogenes cells become harder to eradicate due to their increased resistance to environmental threats. Understanding the genes involved in biofilm formation and their influence on biofilm structure will help identify new ways to eliminate harmful biofilms in food processing environments. To date, multiple genes have been identified as being involved in biofilm formation by L. monocytogenes; however, the exact mechanism remains unclear. This study identified four genes associated with biofilm formation by a persistent strain. Extensive microscopic analysis illustrated the effect of the disruption of mgtB, clsA, uvrB, and mltD and the influence of magnesium on the biofilm structure. The results strongly suggest an involvement in biofilm formation for the four genes and provide a basis for further studies to analyze gene regulation to assess the specific role of these biofilm-associated genes.


Asunto(s)
Proteínas Bacterianas/genética , Biopelículas , Manipulación de Alimentos , Listeria monocytogenes/fisiología , Alimentos Marinos , Genes Bacterianos , Listeria monocytogenes/genética , Mutación , Nueva Zelanda
18.
Appl Environ Microbiol ; 87(8)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33547059

RESUMEN

Geobacillus species are an important contaminant in the dairy industry and their presence is often considered as an indicator of poor plant hygiene with the potential to cause spoilage. They can form heat resistant spores that adhere to surfaces of processing equipment and germinate to form biofilms. Therefore, strategies aimed towards preventing or controlling biofilm formation in the dairy industry are desirable. In this study we demonstrate that the preferred temperature for biofilm and spore formation among Geobacillus stearothermophilus A1, D1, P3 and ATCC 12980 was 65°C. Increasing the total dissolved milk solids concentration to 20% (w/v) caused an apparent delay in the onset of biofilm and spore formation to detectable concentrations among all the strains at 55°C. Compared to the onset time of the biofilm formation of A1 in 10% (w/v) reconstituted skim milk, addition of milk protein (whey protein and sodium caseinate) caused an apparent delay in the onset of biofilm formation to detectable concentrations by an average of 10 h at 55°C. This study proposes that temperature and total dissolved solids concentration have a cumulative effect on the biofilm and spore formation of G. stearothermophilus A1, D1, P3 and ATCC 12980. In addition, the findings from this study may indicate that preconditioning of stainless-steel surface with adsorbed milk proteins may delay the onset of biofilm and spore formation of thermophilic bacteria during milk powder manufacture.IMPORTANCE The thermophilic bacilli, Geobacillus stearothermophilus is a predominant spoilage bacterium in milk powder manufacturing plants. If their numbers exceed the accepted levels, this may incur financial loses by lowering the price of the end product. Furthermore, they can form heat resistant spores which adhere to processing surfaces and can germinate to form biofilms. Previously conducted research had highlighted the variation in the spore and biofilm formation among three specific strains of G. stearothermophilus isolated from a milk powder manufacturing plant in New Zealand. The significance of our research is demonstrating the effect of two abiotic factors namely temperature and total dissolved solids concentration on the biofilm and spore formation of these three dairy isolates, leading to modifications in the thermal processing steps aimed towards controlling the biofilm and spore formation of G. stearothermophilus in the dairy industry.

19.
Microorganisms ; 10(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35056522

RESUMEN

The stabilization of probiotics for application in non-refrigerated food products is a challenging task. In the present study, probiotic Lactobacillus paracasei (Lacticaseibacillus paracasei) ATCC 55544 cells were immobilized in a dairy matrix comprising of whole milk powder, skim milk powder, or milk protein isolate using fluidized bed drying technology. The samples were taken out at different drying stages, with an apparent water activity (aw) of aw 0.5, aw 0.4, and aw 0.3, respectively, and vacuum-packed to maintain the aw and stored at three different temperatures of 4 °C, 25 °C, and 37 °C. The study evaluated the impact of matrix constituents, milk fat, protein, and carbohydrate on the viability of encapsulated probiotic L . paracasei ATCC 55544 during storage for 1 month. The whole milk powder matrix provided superior protection to the bacteria. Confocal Laser Scanning Microscopy (CLSM) was used to investigate the structure of the immobilizing matrix and the location of the probiotic L. paracasei cells embedded within the matrix. The CLSM study revealed that the probiotic bacterial cells are mostly embedded as clusters beneath the top layer. We hypothesize that the biofilm-like structure, together with the protective whole milk powder matrix, helps to retain the superior viability of probiotic cells during storage at non-refrigerated storage conditions of 25 °C and 37 °C.

20.
Front Microbiol ; 11: 608998, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33343553

RESUMEN

The rise of antimicrobial resistant bacteria has fast-tracked the exploration for novel antimicrobial compounds. Reports on antimicrobial producing soil anaerobes such as Clostridium spp. are very limited. In the present study, the antimicrobial activity of soil Clostridium enriched conditioned/spent media (CMs) against Bacillus mycoides, Bacillus cereus and Pseudomonas aeruginosa was assessed by turbidimetric growth inhibition assay. Our results highlighted the antimicrobial potential of soil Clostridium enriched conditioned media against pathogenic and spoilage bacteria. Farm 4 soil conditioned medium (F4SCM) demonstrated a greater growth inhibition activity against all three tested microorganisms in comparison to other soil conditioned media. Non-targeted metabolite profiling of all soil conditioned media revealed distinctive polar and intermediate-polar metabolites in F4SCM, consistent with its strong antimicrobial property. Moreover, 539 significantly abundant metabolites including some unique features were detected in F4SCM suggesting its substantial and specialized chemical diversity. This study putatively identified seven significantly high metabolites in F4SCM; 3-hydroxyphenylacetic acid, γ-aminobutyric acid, creatine, tryptamine, and 2-hydroxyisocaproic acid. Tryptamine and 2-hydroxyisocaproic acid were previously reported to have antimicrobial properties. The present study shows that soil Clostridium spp. are a promising group of bacteria producing metabolites with antimicrobial activity and provides future prospects for clostridial antimicrobial discovery within their metabolic diversity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...